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1 Convexity of Relative Entropy and the Data Processing
Inequality

1.1 Chain rules for entropy, relative entropy, and mutual information

The chain rule for entropy for two random variables says that

H(X1, X2) = H(X1) +H(X2 | X1)

For n variables, we have

H(Xn
1 ) = H(Xn−1

1 , Xn)

= H(Xn−1
1 ) +H(Xn | Xn−1

1 )

...

= H(X1) +H(X2 | X1) + · · ·+H(Xn | Xn−1
1 ),

which we can write as

=

n∑
`=1

H(X` | X`−1
1 ).

Here, the convention is that X`−1
1 for ` = 1 needs no conditioning.

This also comes from

H(Xn
1 ) = E

[
log

1∏n
`=1 p(X` | X`−1

1 )

]

=

n∑
`=1

E

[
log

1

p(X` | X`−1
1 )

]

=

n∑
`=1

H(X` | X`−1
1 ).
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Similarly, we can obtain the chain rule for relative entropy from

D(p(xn1 ) || q(xn1 )) = Ep
[
log

p(Xn
1 )

q(Xn
1 )

]
= Ep

[
log

∏n
`=1 p(X` | X`−1

1 )∏n
`=1 q(X` | X`−1

1 )

]

=

n∑
`=1

Ep

[
log

p(X` | X`−1
1 )

p(X` | X`−1
1 )

]

=
n∑
`=1

D(p(x` | x`−11 ) || q(x` | x`−11 ) | p(x`−11 )).

We can also obtain the chain rule for mutual information:

I(X;Y1, Y2) = I(X;Y1) + I(X;Y2 | Y1).

This comes from

E
[
log

p(X,Y1, Y2)

p(X)p(Y1, Y2)

]
= E

[
p(X,Y1)

p(X)p(Y1)

p(X,Y1, Y2)p(Y1)p(Y1)

p(Y1)p(X,Y1)p(Y2, Y1)

]
= E

[
log

p(X,Y1)

p(X)p(Y1)

p(X,Y2 | Y1)
p(X | Y1)p(Y2 | Y1)

]
,

More generally,

I(X;Y n
1 ) = I(X;Y n−1

1 , Yn)

= I(X;Y n−1
1 ) + I(X;Yn | Y n−1

1 )

...

= I(X;Y1) + I(X;Y2 | Y1) + · · ·+ I(X;Yn | Y n−1
1 ),

which we can write as

=

n∑
`=1

I(X;Y` | Y `−1
1 ).

1.2 Convexity of relative entropy and the log-sum inequality

An important property of relative entropy D(p || q) is that it is convex in the pair (p, q),
where p denotes (p(x), x ∈X ) and q denotes (q(x), x ∈X ). That is for all (p0, q0), (p1, q1)
and λ ∈ [0, 1], if we denote pλ = λp1 + (1− λ)p0 and qλ = λq1 + (1− λ)q0, then

D(pλ || qλ) ≤ λD(p1 || q1) + (1− λ)D(p0 || q0).
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Remark 1.1. Note that D(p || q) can take the value +∞.

This is a consequence of the log-sum inequality:

Lemma 1.1 (log-sum inequality). Suppose ai, bi > 0 for i ∈X .∑
i∈X

ai log
ai
bi
≥ a log

a

b
,

where a =
∑

i∈X ai and b =
∑

i∈X bi.

Proof. This comes from the convexity of u log u for u ≥ 0. The left hand side is∑
i∈X

ai log
ai
bi

= b
∑
i∈X

bi
b

(
ai
bi

log
ai
bi

)
Using Jensen’s inequality,

≥ b

(∑
i

bi
b

ai
bi

)
log

(∑
i

bi
b

ai
bi

)
= a log

a

b
.

Corollary 1.1. D(p || q) is convex in the pair (p, q).

Proof.

λD(p1 || q1) + (1− λ)D(p0 || q0) =
∑
x

λp1(x) log
p1(x)

q1(x)
+ (1− λ)p0(x) log

p0(x)

q0(x)

=
∑
x

λp1(x) log
λp1(x)

λq1(x)
+ (1− λ)p0(x) log

(1− λ)p0(x)

(1− λ)q0(x)

Using the log-sum inequality,

≥
∑
x

(λp1(x) + (1− λ)p0(x)) log
λp1(x) + (1− λ)p0(x)

λq1(x) + (1− λ)q0(x)

= D(pλ || qλ).

Remark 1.2. The inequality is still true if any of the terms = +∞.

A good book on convex functions is the book by Rockafeller.
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1.3 The data processing inequality

The data processing inequality says that if you are looking at the mutual information
between X and Y and then you process Y in a way that does not use X, the mutual
information can only decrease. How do we make this notion precise?

Definition 1.1. Given 3 random variables X,Y, Z, we write Y −X − Z to indicate that
Y and Z are conditionally independent given X. We may say that they form a Markov
chain in this order. In probability notation, we may use the notation Y qX Z.

Recall that conditional independence says that p(y, z | x) = p(y | x)p(z | x). Since

p(y, z | x) = p(y | x, z)p(z | x),

the assumed conditional independence gives

p(y | x, z) = p(y | x).

This argument can be run backwards, hence the “Markov” terminology.

Remark 1.3. Running the argument in the other direction gives p(z | x, y) = p(z | x) if
Y −X − Z.

Theorem 1.1 (Data processing inequality). Suppose Y − X − Z form a Markov chain.
Then

I(Y ;Z) ≤ I(Y ;X).

Proof. Use the chain rule in two different orders:

I(Y ;X,Z) = I(Y ;X) + I(Y ;Z | X),

I(Y ;X,Z) = I(Y ;Z) + I(Y ;X | Z).

Because Y qX Z, I(Y ;Z | X) = 0. In fact, each I(Y ;Z | X = x) equals 0. So

I(Y ;X) ≥ I(Y ;Z),

as desired.

Remark 1.4. The condition for equality is I(Y ;X | Z) = 0, i.e. Y qZ X. This has
interesting implications in statistics. Say we try to find an estimate for a random variable
Θ (in a Bayesian framework) based on observations X. We might ask for some function
T (X) such that Θ−X−T (X). When is it true that I(Θ;T (X)) = I(Θ;X)? This happens
precisely when Θ− T (X)−X.

A typical example (not in a discrete context) is when Θ is the mean of the marginal,
where each marginal is normal with variance 1. So conditioned on Θ = θ, each Xi ∼ N(0, 1)
for 1 ≤ i ≤ n. If T (X) = 1

n

∑
iXi, then Θ−T (X)−X. By the data processing inequality,

we should study T (X) instead of X in a statistical context because it contains at least as
much information as X in terms of estimating Θ.
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